Electrochemical production of perchlorates as a way of valorize the rejection streams of the SWRO process

Javier Llanos, Inmaculada Moraleda, Cristina Sáez, Manuel A. Rodrigo, Pablo Cañizares

Department of Chemical Engineering, University of Castilla-La Mancha
Avenida Camilo José Cela 12. 13004 Ciudad Real. Spain

Murcia, Spain, 13th June 2018
INDEX

1. Introduction

2. Aims

3. Materials and methods

4. Results and discussion

5. Conclusions

6. Acknowledgments
1 INTRODUCTION

MANAGEMENT OF SWRO BRINE

DISPOSAL

CONCENTRATION

VALORIZATION

ENERGY RECOVERY

CLEANING

INDUSTRY

AGRICULTURE

A) Pressure retarded osmosis

Pretratamiento
INTRODUCTION

1. Oxidants

- Bleaching agents
- Detergents
- Explosives
- Organic synthesis

2. Oxidants for water treatment
- Disinfection

3. Oxidants for soil treatment
Introduction

Boron Doped Diamond (BDD) Electrodes

- Metaestable form of carbon at room pressure and temperature
- Electrical insulator
 - Positive doping
 - Negative doping
 - High thermal conductivity
 - High electrochemical stability
 - Wide electrochemical window

Production of high concentration of hydroxyl radicals, available to perform electrochemical reactions.
1 INTRODUCTION

MANAGEMENT OF SWRO BRINE. VALORIZACION

\[
\begin{align*}
\text{Cl}^- + \cdot \text{OH} & \rightarrow \text{ClO}^- + \text{H}^+ + \text{e}^- \\
\text{ClO}^- + \cdot \text{OH} & \rightarrow \text{ClO}_2^- + \text{H}^+ + \text{e}^- \\
\text{ClO}_2^- + \cdot \text{OH} & \rightarrow \text{ClO}_3^- + \text{H}^+ + \text{e}^- \\
\text{ClO}_3^- + \cdot \text{OH} & \rightarrow \text{ClO}_4^- + \text{H}^+ + \text{e}^-
\end{align*}
\]

BDD ELECTROLYSIS

PRODUCTION OF PERCHLORATE
1. Introduction

2. Aims

3. Materials and methods

4. Results

5. Conclusions and discussion

6. Acknowledgments
To develop a process for the electrochemical production of perchlorate by BDD electrolysis from highly-concentrated NaCl solutions (typical of SWRO brines)

- To evaluate the general behaviour of the electrolysis of NaCl solutions (from 1M to 5M, 58.5 to 292.5 g dm$^{-3}$) by BDD electrolysis
- To determine the influence of the initial concentration of NaCl and current density
- To estimate the power consumption and cost of energy for the production of perchlorate
INDEX

1. Introduction

2. Aims

3. Materials and methods

4. Results and discussion

5. Conclusions

6. Acknowledgments
Boron doped diamond (BDD): anode
- Stainless steel: cathode
- Coating: (boron content: 500-700 ppm, sp3/sp2 ratio: 220 ± 5%, thickness: 2.7 µm ± 10%)
INDEX

1. Introduction

2. Aims

3. Materials and methods

4. Results and discussion

5. Conclusions

6. Acknowledgments
RESULTS AND DISCUSSION

PRODUCTION OF CHLORINE DERIVATES

1 M NaCl; V = 1 L
- • 1000 A m⁻²; ▲ 1500 A m⁻²; ■ 2000 A m⁻²

Hypochlorite and Chlorate coexist within the first part of the test.
RESULTS AND DISCUSSION

PRODUCTION OF CHLORINE DERIVATES

1 M NaCl; V = 2 L
• 1000 A m\(^{-2}\); ▲ 1500 A m\(^{-2}\); ■ 2000 A m\(^{-2}\)

\[
\begin{align*}
\text{Cl}^- + \cdot \text{OH} & \rightarrow \text{ClO}^- + \text{H}^+ + \text{e}^- & \text{(1)} \\
\text{ClO}^- + \cdot \text{OH} & \rightarrow \text{ClO}_2^- + \text{H}^+ + \text{e}^- & \text{(2)} \\
\text{ClO}_2^- + \cdot \text{OH} & \rightarrow \text{ClO}_3^- + \text{H}^+ + \text{e}^- & \text{(3)} \\
\text{ClO}_3^- + \cdot \text{OH} & \rightarrow \text{ClO}_4^- + \text{H}^+ + \text{e}^- & \text{(4)}
\end{align*}
\]

HIGH CONVERSION. MINIMUM CHARGE FOR PERCHLORATE PRODUCTION
RESULTS AND DISCUSSION

INFLUENCE OF NaCl CONCENTRATION

2 M NaCl; V = 1 L
• 1000 A m⁻²; ▲ 1500 A m⁻²; ■ 2000 A m⁻²

SIMILAR BEHAVIOR WITH 2M NaCl
RESULTS AND DISCUSSION

INFLUENCE OF NaCl CONCENTRATION

Full symbols: conversion; Empty symbols: current efficiency

- ● 1000 A m\(^{-2}\);
- ▲ 1500 A m\(^{-2}\);
- ■ 2000 A m\(^{-2}\)

✓ HIGHEST CONVERSION REPORTED
✓ HIGH CURRENT EFFICIENCY
✓ NEGLIGIBLE INFLUENCE OF CURRENT DENSITY AND CONCENTRATION
RESULTS AND DISCUSSION

Anode

\[\text{Anode} \]

\[\text{Interphase} \quad \text{Electrolyte} \]

\[nF \]

\[I \]

\[r \]

\[1 \]

\[(\text{full availability of raw material}) \]

For high Cl\(^-\) concentration

High value of \(r_2 \)

\(r_2 \geq r_1 \)

Negligible influence of working variables

Electrochemical reaction

\[r_1 = \frac{I}{nF} \]

Mass transport

\[r_2 = kA(C_b - C_e) \]
RESULTS AND DISCUSSION

HIGHER Cl\(^-\) CONCENTRATION

3500 MILLION DOLLARS FOR 10000 STUDENTS

NO MASS TRANSFER LIMITATIONS

LOWER Cl\(^-\) CONCENTRATION

250 MILLION EUROS FOR 20000 STUDENTS

MASS TRANSFER LIMITATIONS DEPENDING ON WORKING PARAMETERS
SIMILAR EVOLUTION OF CELL VOLTAGE AND POWER CONSUMPTION

POWER CONSUMPTION OF 26.14 kWh kg\(^{-1}\) FOR 2 M & 1000 A m\(^{-2}\)
Results and Discussion

Influence of NaCl Concentration. Power Consumption

<table>
<thead>
<tr>
<th>j (A m$^{-2}$)</th>
<th>$[\text{NaCl}]_0$ 1 M</th>
<th>2 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>3.70</td>
<td>2.93</td>
</tr>
<tr>
<td>1500</td>
<td>3.49</td>
<td>2.99</td>
</tr>
<tr>
<td>2000</td>
<td>6.28</td>
<td>4.78</td>
</tr>
</tbody>
</table>

- COST OF ENERGY* FROM 2.93 € kg$^{-1}$ TO 6.28 € kg$^{-1}$ *

* EUROSTAT cost of energy for non-household users (2017)
INDEX

1. Introduction

2. Aims

3. Materials and methods

4. Results and discussion

5. Conclusions

6. Acknowledgments
The production of perchlorate with BDD from high-salinity effluents (typical of the brine of SWRO processes) is technically viable and efficient.

- High conversions and current efficiency.

- A very limited influence of initial NaCl concentration and current density

- Perchlorate is not produced until a value of applied electric charge.

- Specific energy consumption of 26.14 kWh kg\(^{-1}\)
1. Introduction

2. Aims

3. Materials and methods

4. Results and discussion

5. Conclusions

6. Acknowledgments
The financial support from the Spanish Ministry of Economy, Industry and competitiveness and European Union through project CTM2016-76197-R (AEI/FEDER, UE) is gratefully acknowledged.
Electrochemical production of perchlorates as a way of valorize the rejection streams of the SWRO process

Javier Llanos, Inmaculada Moraleda, Cristina Sáez, Manuel A. Rodrigo, Pablo Cañizares

Department of Chemical Engineering, University of Castilla-La Mancha
Avenida Camilo José Cela 12. 13004 Ciudad Real. Spain

Murcia, Spain, 13th June 2018
INTRODUCTION

Oxidants:
- Chlorine-based oxidants
- Hydrogen peroxide
- Potassium permanganate

Substances:
- Peracetic acid
- Perchlorate
- Peroxodisulphate
- Ferrate
- Peroxophosphate
- Perbromate
INTRODUCTION

ELECTROCHEMICAL TECHNOLOGY

MAIN ADVANTAGES

✓ It is **not necessary** to add additional chemical reagents. The \(e^- \) es the main “reagent”

✓ **Minimization** in the production of waste streams

✓ **Room** temperature and pressure

✓ **Easy automation** of the process
1 INTRODUCTION

Industria cloro-alcalina

\[2 \text{NaCl(aq)} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH(aq)} + \text{Cl}_2 + \text{H}_2 \]

- Electrólisis con celda de mercurio
- Electrólisis con celda de diafragma
- Electrólisis con celda de membrana

PRINCIPALES PROCESOS ELECTROQUÍMICOS DE SÍNTESIS DE OXIDANTES

Producción de peroxodisulfatos

\[2 \text{H}_2\text{SO}_4 - 2 \text{e}^- \rightarrow \text{S}_2\text{O}_8^{4-} + 4 \text{H}^+ \]

Producción de permanganato de potasio

\[2 \text{MnO}_2 + 6 \text{KOH} + \frac{1}{2} \text{O}_2 \rightarrow 2 \text{K}_3\text{MnO}_4 + 3 \text{H}_2\text{O} \]

\[2 \text{K}_3\text{MnO}_2 + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 \rightarrow 2 \text{K}_2\text{MnO}_4 + 2 \text{KOH} \]

\[2 \text{MnO}_2 + 2 \text{KOH} + 3/2 \text{O}_2 \rightarrow 2 \text{KMnO}_4 + \text{H}_2\text{O} \]